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Abstract:  16 

An accurate temporal and spatial characterization of errors is required for the efficient processing, 17 

evaluation, and assimilation of remotely-sensed surface soil moisture retrievals. However, 18 

empirical evidence exists that passive microwave soil moisture retrievals are prone to periodic 19 

artifacts which may complicate their application in data assimilation systems (which commonly 20 

treat observational errors as being temporally white). In this paper, the link between such 21 

temporally-periodic errors and spatial land surface heterogeneity is examined. Both the synthetic 22 

experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity, 23 

temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the 24 

polar-orbiting satellites) can lead to spurious high frequency spectral peaks in soil moisture 25 

retrievals. In addition, the global distribution of the most prominent and consistent 8-day spectral 26 

peak in the Advanced Microwave Scanning Radiometer – Earth Observing System soil moisture 27 

retrievals is revealed via a peak detection method. Three spatial heterogeneity indicators – based 28 

on microwave brightness temperature, land cover types, and long-term averaged vegetation index 29 

– are proposed to characterize the degree to which the variability of land surface is capable of 30 

inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day 31 

periodic errors are generally consistent with those exhibiting relatively higher heterogeneity 32 

indicators. This implies a causal relationship between spatial land surface heterogeneity and 33 

temporal periodic error in remotely-sensed surface soil moisture retrievals. 34 

 35 
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I. Introduction 39 

Within the past two decades, extensive efforts have been aimed at enhancing remote 40 

estimation of surface soil moisture. Currently, several global space-borne soil moisture products 41 

are available from a series of satellite-based passive and/or active microwave sensors. The accurate 42 

characterization of global satellite-derived soil moisture products is crucial for multiple 43 

hydrological (Srivastava et al., 2013; Wagner et al., 2007a), meteorological (Koster et al., 2004; 44 

Seneviratne et al., 2010), agricultural (Bolten et al., 2010; Engman et al., 1991; Lakhankar et al., 45 

2009a), and natural hazardous (Lacava et al., 2005) applications. Especially in hydrological data 46 

assimilation community, the inclusion of satellite-based soil moisture observations has drawn great 47 

attention for the purposes of catchment rainfall-runoff (Alvarez-Garreton et al., 2014; Crow et al., 48 

2009; Komma et al., 2008) and both continental (Crow and Zhan, 2007; Walker and Houser, 2004) 49 

and global-scale (Reichle and Koster, 2005; Reichle et al., 2004; 2007) land surface modeling. 50 

Recently, Su et al. (2013a; 2015) presented a spectrally-based approach for evaluating 51 

satellite-derived soil moisture retrievals, which builds upon a semi-empirical water balance model 52 

and operates in the frequency domain. Based on this approach, they identified periodic error 53 

components in passive microwave retrieved soil moisture Level 3 (gridded) retrieval products 54 

acquired from both the Advanced Microwave Scanning Radiometer – Earth Observing System 55 

(AMSR-E) and the Soil Moisture and Ocean Salinity (SMOS) missions, suggesting the need to 56 

consider the presence of temporally-periodic errors when using and/or evaluating such products. 57 

Most land data assimilation approaches are based on an assumption of temporally-white and 58 

Gaussian-distributed errors forms (Burgers et al., 1998). Therefore, a thorough examination of soil 59 

moisture retrieval error structure is crucial for not only properly describing their error 60 
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characteristics but also their potential implementation within a land data assimilation system 61 

(Crow and Van den Berg, 2010). 62 

Gridded satellite-based soil moisture retrievals are based on the sampling of adjacent 63 

footprints within the same orbital overpass. Three commonly used interpolation algorithms are: 64 

drop-in-bucket, nearest neighbor, and inverse-distance-squared methods (Chan et al., 2012). The 65 

choice of interpolation algorithm affects the effective antenna pattern of the spatial support 66 

associated with a particular grid box. For the Soil Moisture Active Passive (SMAP) mission, the 67 

averaged half-power beam-width field-of-view (FOV) size of the inverse-distance-squared 68 

approach is about 40 km. In addition, radiation outside the half-power beam-width can contribute 69 

to the signal – suggesting that the gridded signal may include significant radiance contributions 70 

from emitters outside the grid (Jackson et al., 2010). For polar-orbiting satellites with an exact 71 

repeat cycle there are periodic variations in the spatial support of individual grids (due to day-to-72 

day variations in the exact footprint-averages underlying each grid cell). Over highly 73 

heterogeneous regions, the impact of this periodic sampling may become more pronounced and 74 

periodic errors may arise which are related to the periodicity of the sampling pattern. 75 

Additionally, passive microwave observations are potentially contaminated by man-made 76 

radio frequency interference (RFI). RFI can obscure (relatively weaker) geophysical emission 77 

associated with land source variables like soil moisture (Daganzo-Eusebio et al., 2013; Njoku et 78 

al., 2005). In addition to the spatial heterogeneity in natural land surface signals, RFI sources 79 

observed over land areas are typically fixed in space (Njoku et al., 2005) which may lead to 80 

periodic errors in satellite-based retrievals as these sources are re-sampled periodically. From this 81 

point of view, a satellite-derived soil moisture product with consideration of the contributing factor 82 

of RFI should be analyzed to expose the origins of periodic errors. 83 
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In practice, a simple ad hoc low pass filter (i.e., a 5-day moving average) adopted by 84 

Wagner et al. (2007b) and Draper et al. (2009) has been shown to slightly improve the quality of 85 

satellite-based soil moisture retrievals. Nonetheless, this empirical method is arbitrary and only 86 

effective for dampening very short-term fluctuations (i.e., 2-day periodic errors). Recent 87 

experimental studies have shown that analyzing the soil moisture time series in the frequency 88 

domain can provide supplementary insights with regard to its conjugate time domain (Katul et al., 89 

2007). For example, Du (2012) used the high-pass Fourier filter to keep small temporal scale soil 90 

moisture signals in the directly observed emissivity time series, while filtering out the mixture 91 

signals of vegetation phenology in the low frequency component (Moody and Johnson, 2001; 92 

Scharlemann et al., 2008) and long-term soil moisture trends. However, such a method requires 93 

not only the accurate extraction of high-frequency soil moisture signals from sensor direct 94 

observations, but also the availability of an accurate long-term climatology from land surface 95 

models or existing satellite-based soil moisture product. On the other hand, Su et al. (2013a) 96 

applied a band-stop filter to remove the identifiable stochastic and systematic errors in high-97 

frequency regime and then a low-pass Wiener filter for preserving the long-term temporal mean 98 

and variance. This approach is more physically realistic and based on the rationale that small time 99 

scale soil moisture dynamics can be simplified into incoming precipitation and water loss process 100 

with brown-like spectrum (Katul et al., 2007; Su et al., 2013a).  101 

However, the application of any filter comes at the risk of information loss. For example, 102 

when blindly applying the band-stop filter, high-frequency signal components related to rapid soil 103 

moisture changes following intense rainfall events can also be attenuated. Therefore, the accurate 104 

a priori identification of land surface conditions associated with spurious high frequency 105 

resonances is beneficial for efficient and flexible application of the band-stop filter. 106 
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To examine the plausible reasons behind the existence of  high-frequency peaks and 107 

improve our understanding of errors in the satellite-derived soil moisture time series, this study 108 

will focus primarily on the most prominent and consistent periodicity (8-day) existing in an 109 

AMSR-E soil moisture retrieval product. The spatial distribution of such a periodic error will be 110 

inter-compared to measures of land surface spatial heterogeneity. Section 2 presents the satellite-111 

derived soil moisture product from the passive microwave AMSR-E sensor via the Land Parameter 112 

Retrieval Model (LPRM) retrieval algorithm, the spectral analysis of soil moisture, and our peak 113 

detection method. Three straightforward heterogeneity indicators, based on: microwave brightness 114 

temperature, land cover types, and long-term averaged Normalized Difference Vegetation Index 115 

(NDVI), are then proposed for characterizing spatial variability along the land surface. Section 3 116 

evaluates the spectral characteristics of soil moisture retrievals and explains their relationship with 117 

these heterogeneity indicators. Further discussion of concerns and potential implications is 118 

provided in section 4, and final conclusions are presented in section 5. 119 

 120 

II. Materials and methods 121 

A long-term soil moisture product is necessary in order to robustly investigate periodic 122 

errors in satellite-derived soil moisture time series. Among various microwave sensors and 123 

missions, the AMSR-E sensor onboard the National Aeronautics and Space Administration 124 

(NASA) Aqua provides the longest currently-available source of soil moisture data (i.e., from June 125 

2002 to October 2011) from a single sensor and is therefore the primary focus of this study. 126 

 127 

2.1. AMSR-E soil moisture product and LPRM retrieval model 128 

2.1.1 AMSR-E basic information 129 
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The AMSR-E sensor was a six-frequency dual-polarized passive microwave radiometer, 130 

onboard the NASA Aqua satellite with a 16-day exact repeat cycle. With a sun-synchronous orbit 131 

at an altitude of 705 km, AMSR-E scans the Earth’s surface at 1:30 a.m. (descending)/1:30 p.m. 132 

(ascending) local equator overpass time and an incidence angle of 55°. AMSR-E provided a nearly 133 

nine-and-a-half-years long-term measurement time series from June 2002 to October 2011. 134 

Among its six microwave frequency bands, the spatial resolutions of footprint measurements at 135 

6.9 GHz (C-band), 10.7 GHz (X-band), and 36.5 GHz (Ka-band) were 74 ×43 km, 51×30 km, 136 

and 14×8 km, respectively (Njoku et al., 2003).  137 

Several soil moisture retrieval algorithms have been developed for AMSR-E brightness 138 

temperature (𝑇𝐵 ) data. Here, surface soil moisture (~2 cm) and vegetation optical depth are 139 

retrieved simultaneously from C-band 𝑇𝐵 via the LPRM (see below for further details). In areas 140 

with significant RFI such as the contiguous United States (CONUS), Japan, and India, LPRM 141 

switches to X-band. Figure 1.a and 1.b show the distribution maps of bands that have been utilized 142 

for soil moisture retrieval. Regardless of the band used, AMSR-E ascending and descending half-143 

orbits are separately re-sampled from their original footprint resolution to a regular quarter degree 144 

grid and then processed through LPRM to retrieve soil moisture (see below). 145 

2.1.2 Land Parameter Retrieval Model 146 

LPRM uses a forward modeling optimization procedure to solve a radiative transfer 147 

equation without the need for parameter calibration and other biophysical measurements. The 148 

physically-based LPRM (De Jeu and Owe, 2003; Meesters et al., 2005; Owe et al., 2001) has been 149 

successfully applied to retrieve surface soil moisture from space-borne passive microwave 150 

observations including AMSR-E (Owe et al., 2008) and SMOS (De Jeu et al., 2009; Van der 151 

Schalie et al., 2015; Van der Schalie et al., 2016). Moreover, the AMSR-E LPRM product has 152 
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been well-validated with in situ campaigns (Brocca et al., 2011; De Jeu et al., 2008; Draper et al., 153 

2009; Su et al., 2013b) and thoroughly assessed in previous studies (Al-Yaari et al., 2014; Dorigo 154 

et al., 2010; Draper et al., 2012; Rebel et al., 2012). Here, version 5 of the AMSR-E LPRM soil 155 

moisture product is collected from January 2003 to October 2011. 156 

The LPRM algorithm can simultaneously retrieve surface soil moisture and vegetation 157 

optical depth (VOD) from passive microwave observations using both horizontally- and vertically-158 

polarized 𝑇𝐵 data. The retrieval scheme is based on solving a radiative transfer model (Mo et al., 159 

1982) via a nonlinear iterative optimization procedure. The radiation emission 𝑇𝑏 measured over 160 

a land surface with vegetation canopy can be described as 161 

 𝑇𝑏(𝑃) = 𝑇𝑆𝑒𝑟(𝑃)Γ𝑉 + (1 − 𝜔)𝑇𝐶(1 − Γ𝑉) + (1 − 𝑒𝑟(𝑃))(1 − 𝜔)𝑇𝐶(1 − Γ𝑉)Γ𝑉 (1) 162 

where the subscript 𝑃 is 𝐻 for horizontal or 𝑉 for vertical polarization, 𝑇𝑆 the thermodynamic soil 163 

temperature, 𝑒𝑟(𝑃)  the rough surface emissivity, Γ𝑉  the vegetation transmissivity, ω  the single 164 

scattering albedo, and 𝑇𝐶 the canopy temperature. The above equation represents three terms: the 165 

radiation emanated from the underlying soil as attenuated by the canopy, the upward radiation 166 

directly from the overlying vegetation, and the downward radiation from the vegetation (reflected 167 

by the soil and further attenuated by the vegetation). 168 

The rough surface emissivity is calculated for both polarizations using the emissivity model 169 

developed by Wang and Choudhury (1981) 170 

 𝑒𝑟(𝐻) = 1 − ((1 − 𝑄)𝑅𝑠(𝐻) + 𝑄𝑅𝑠(𝑉))𝑒−ℎ𝑐𝑜𝑠(𝑢) (2) 171 

where 𝑄 and ℎ are the polarization mixing factor and empirical roughness, respectively, and both 172 

are dimensionless parameters. The smooth surface reflectivity 𝑅𝑠  is a function of dielectric 173 

constant 𝑘  and satellite observational incidence angle 𝑢  and is calculated using the Fresnel 174 

equations. Furthermore, the dielectric constant 𝑘 is estimated via the Wang-Schmugge dielectric 175 
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mixing model (Wang and Schmugge, 1980). Equation 2 is written for 𝐻 polarization emissivity. 176 

For 𝑉 polarization results, the polarization signs should be switched. 177 

The vegetation transmissivity Γ𝑉 is defined in terms of the VOD 𝜏𝑉 and incidence angle 𝑢 178 

as 179 

 𝛤𝑉 = exp (
−𝜏𝑉

cos(𝑢)
) (3) 180 

The VOD 𝜏𝑉 is directly related to the canopy density, or more specifically, the vegetation water 181 

content. Derived by Meesters et al. (2005), the VOD is a function of 𝑘  and the Microwave 182 

Polarization Difference Index (MPDI) 183 

 𝑀𝑃𝐷𝐼 =
𝑇𝑏(𝑉)−𝑇𝑏(𝐻)

𝑇𝑏(𝑉)+𝑇𝑏(𝐻)
 (4) 184 

where MPDI is calculated directly from observed brightness temperatures. By normalizing for 185 

temperature dependence, the MPDI becomes more highly-related to the dielectric properties of the 186 

radiating body including both the canopy and soil emissions (Owe et al., 2008). 187 

Regarding the thermodynamic conditions of vegetation and soil, a further assumption in 188 

the LPRM algorithm is that the soil temperature and canopy temperature are in isothermal 189 

equilibrium 190 

 𝑇𝑆 = 𝑇𝑐 = 𝑇 ≅ 𝑎𝑇𝑏(𝑉)
𝐾𝑎 + 𝑏. (5) 191 

For AMSR-E, 𝑇 is derived from the accompanying Ka-band 𝑇𝑏 at 𝑉 polarization (Holmes et al., 192 

2009). Atmospheric contributions to satellite observed 𝑇𝐵 are also taken into account following 193 

Owe et al. (2008). 194 

 195 

2.2. Ancillary dataset 196 

2.2.1 International Soil Moisture Network 197 
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The International Soil Moisture network (ISMN) has assembled over 50 operational and 198 

experimental soil moisture networks worldwide, providing a global in situ soil moisture database 199 

with uniform data format and pre-processing quality flags (Dorigo et al., 2013). While most of the 200 

networks are located in northern America and Europe, some regions in Asia and Australia are also 201 

covered. Detailed information about the ISMN is reported in Dorigo et al. (2011) and Gruber et al. 202 

(2013). The ISMN dataset was downloaded from http://ismn.geo.tuwien.ac.at in February 2017. 203 

For direct comparison with AMSR-E LPRM soil moisture product, these sparsely 204 

distributed in situ soil moisture records are analyzed in the frequency domain as well. The ISMN 205 

soil moisture is originally recorded along with Coordinated Universal Time (UTC) time and has 206 

been converted to local solar time before next processing. To be consistent with the overpass time 207 

of AMSR-E, records are extracted at 02:00 p.m. and 01:00 a.m. for ascending and descending half-208 

orbits, respectively. Observations are masked using the quality flag (identified as ‘good’ with ‘G’) 209 

and stations located within the same quarter degree box are averaged for simplicity. For example, 210 

there are three networks of which 55 stations are collocated within a quarter degree grid (latitude: 211 

38.375° N, longitude: 120.875° W), namely COSMOS, FLUXNET-AMERIFLUX, and 212 

SOILSCAPE. However, only three stations provided measurements during our study period and 213 

are averaged accordingly. Note that the point-scale soil moisture observation cannot fully represent 214 

the footprint satellite retrieval and the sampling depth may also introduce differences. Strategies 215 

have been proposed for minimizing the systematic differences between ground-based 216 

measurement and satellite-based retrievals, such as computing anomalies through subtracting a 217 

moving window averaging-based climatology (Dorigo et al., 2015; Gruber et al., 2013). However, 218 

since the in situ soil moisture is used only to help identifying spectral spectral peaks in AMSR-E 219 

LPRM soil moisture retrievals, these strategies have not been applied here.  220 
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2.2.2 Land cover—GlobeLand30 221 

Several global land cover maps derived from multiple satellite sensors are currently 222 

available. The sensitivity of microwave emissivity to soil moisture varies with different land cover 223 

variables – in particular, vegetation optical depth. High spatial resolution surface land cover maps 224 

can thus provide sub-pixel heterogeneity information for coarse resolution soil moisture products. 225 

However, the isolation of highly mixed land cover types is cumbersome and beyond the scope of 226 

this study. Therefore, the 30-meters high resolution GlobeLand30 dataset, based on Landsat data 227 

(Chen et al., 2015), is merely included for visual interpretation of the spatial heterogeneity within 228 

the quarter degree grid of AMSR-E LPRM soil moisture retrievals. According to previous 229 

independent accuracy assessments, the GlobeLand30 has demonstrated an overall accuracy of over 230 

80% (Brovelli et al., 2015). It was downloaded from http://globallandcover.com in January 2017. 231 

2.2.3 Normalized Difference Vegetation Index (NDVI)—MODIS 232 

The Moderate Resolution Imaging Spectroradiometer (MODIS) monthly NDVI 233 

(MOD13C2) product is obtained from January 2003 to December 2011. To be consistent with 234 

AMSR-E LPRM soil moisture retrievals, it has been spatially-aggregated from its original 0.05° 235 

grid to a regular 0.25° resolution. A long-term averaged global NDVI distribution map is then 236 

generated by averaging all quarter-degree monthly data. The MOD13C2 dataset was downloaded 237 

from https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13c2_v006 238 

during May 2017. 239 

2.2.4 Land cover type—MODIS 240 

In addition to the high resolution land cover from the GlobeLand30 product, a dominant 241 

land cover type map at lower spatial resolution (0.05°) is acquired from the MODIS yearly Land 242 

Cover Type Climate Modeling Grid (MCD12C1) product in 2011. This product also provides the 243 
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sub-grid frequency distribution of land cover types. Three classification schemes are included and 244 

the primary International Geosphere Biosphere Programme (IGBP) land cover scheme is selected 245 

for further analysis. IGBP contains 17 land cover classes and has been re-classified into 9 classes 246 

before spatially-aggregated to regular quarter degree (0.25°). They are: Water, Forest, Shrublands, 247 

Grasslands, Cultivated Land, Wetlands, Artificial Surfaces, Permanent Snow and Ice, and 248 

Bareland. Percentages of difference land cover types are summed for each quarter-degree box and 249 

normalized to [0,100]. The MCD12C1 dataset was downloaded from https://lpdaac. 250 

usgs.gov/dataset_discovery/modis/modis_products_table/mcd12c1 during May 2017. 251 

 252 

2.3. Spectral frequency analysis and peak detection method 253 

2.3.1 Power spectral density estimation 254 

The dynamics of soil moisture is an outcome of interactions between incoming 255 

precipitation, canopy interception, evapotranspiration, surface runoff, lateral flow and 256 

groundwater. The near-surface soil moisture time series consists of both a long-term climatology 257 

(low frequency) and short-term anomaly (high frequency) components (Entin et al., 2000). The 258 

long-term climatology originates from seasonally varying precipitation and solar radiation and can 259 

be affected by the vegetation phenology, climate change, and instrument drift for satellite 260 

observations. In contrast, the short-term anomalies represent the process of rainfall instances and 261 

dry-down events and are valuable for analyzing short-term weather extremes (Katul et al., 2007; 262 

Wu and Dickinson, 2004). However, this short-term information is usually contaminated by 263 

observational noises and systematic errors. Here, we focus on the periodic error in the high-264 

frequency regime which may be introduced by the satellite orbiting pattern and/or gridding 265 

approach. 266 
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Following the approach of Su et al. (2013a; 2015), the power spectral density (PSD, in unit 267 

of m6/m6 24hr/rad) of AMSR-E LPRM soil moisture retrievals at a given grid is estimated using 268 

the Welch’s averaged modified periodogram method. This method computes a modified 269 

periodogram for each temporal segment separated by a moving Hamming window and averages 270 

over all estimates to produce a single PSD. Note that the size of Hamming window can play a role 271 

in determining the PSD estimation. Wider Hamming windows tend to produce higher spectral 272 

resolution in the estimated PSD but greater uncertainty in the amplitude estimation, while shorter 273 

windows provide coarser spectral resolution but with lower uncertainty in amplitude. The impact 274 

of Hamming window size on key results will be clarified when describing the peak detection 275 

method in section 2.3.4.  276 

Another issue with PSD estimation is satellite overpass time. AMSR-E has a ascending 277 

half-orbit at 1:30 p.m. and descending half-orbit at 1:30 a.m. Considering that the FOV and near-278 

surface thermal conditions (more specifically, the temperature contrast across the soil-vegetation-279 

air interface) are quite different for these two half-orbits, soil moisture retrievals from ascending 280 

and descending overpasses have been separately analyzed with periodic temporal sampling along 281 

a 24 h interval. 282 

In applying the Fourier transform to stationary time series, most standard PSD estimation 283 

algorithms – including Welch’s method – require an evenly sampled dataset in time. However, 284 

temporal data gaps in passive microwave satellite-derived soil moisture product are inevitable – 285 

primarily due to the satellite orbits, dense vegetation, RFI contamination, and masking for frozen 286 

soil conditions. In this particular case, AMSR-E LPRM soil moisture retrievals are masked if the 287 

complementary VOD levels exceeded 0.8—a level at which the soil radiation is substantially 288 

masked out by the canopy (Owe et al., 2008; De Jeu et al., 2008; Parinussa et al., 2011). Further 289 
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masking has been conducted for grids with significant RFI contamination (Li et al., 2004) and for 290 

frozen soil conditions. In order to produce evenly-spaced data after the application of this masking, 291 

the 1-D Discrete Cosine Transform (DCT) method (Garcia, 2010) is applied for infilling missing 292 

values in the AMSR-E LPRM soil moisture time series. In this study, only grids with less than 365 293 

observations during the 9-years experiment period (11%) are omitted to preserve sufficient spatial 294 

coverage for global analysis with indication of highly in-filled regions. Figure 1.c and Figure 1.d 295 

show the fraction of in-filled data in the AMSR-E LPRM soil moisture product for both descending 296 

and ascending retrievals. Due to the generally warmer surface conditions during the ascending 297 

(01:30 p.m.) half-orbit (Holmes et al., 2015), the fraction of data gaps in descending overpasses is 298 

slightly higher than its ascending counterpart. Additional discussion and an assessment of the 299 

infilling method can be found in section 4.2 and section A of the supporting materials. 300 

 301 

Figure 1. Spatial distribution maps of applied bands for AMSR-E LPRM soil moisture retrieval (upper row) and 302 

fraction of in-filled data for the period 2003 – 2011 (bottom row): (a) and (c) for descending; (b) and (d) for ascending 303 

overpasses, respectively. 304 

2.3.2 Spectrum characteristics of soil moisture time series 305 
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Figure 2 shows the AMSR-E LPRM and ISMN in situ soil moisture time series from 306 

January 2003 to October 2011 for a single 0.25° grid (latitude: 38.375° N, longitude: 120.875° W). 307 

Corresponding PSDs are estimated with two Hamming window sizes (i.e., 1.0 and 8.8 in units of 308 

year).  309 

According to Katul et al. (2007), the soil water balance model dictates that the soil moisture 310 

time series exhibits a Brownian spectrum with more energy at lower frequency and a decrease in 311 

power with increasing frequency (Figure 2.c). Comparing the PSDs of footprint AMSR-E LPRM 312 

soil moisture retrievals and point-scale in situ observations, significant discrepancies exist at high 313 

frequencies. In particular, the relatively flat power distributions of AMSR-E LPRM soil moisture 314 

for T<103 h reflect high-frequency noise, which can be introduced by various short-term stochastic 315 

processes contributing to retrieval errors (Su et al., 2013a). Note that – based on a thorough 316 

exploration over various grids with in situ soil moisture observations – the grid demonstrated here 317 

is representative for a spectral comparison between ground-based measurements and satellite-318 

derived soil moisture retrievals. 319 

Importantly, several distinct resonant peaks with periods ranging between 2 to 16 days are 320 

sitting on the AMSR-E flat noise floor (Figure 2.d). Given the lack of known physical processes 321 

capable of producing such harmonics, these peaks are likely spurious signals characterized by 322 

periodic increases in power with these time intervals. Without consideration of the long-term 323 

satellite orbit drift, the repeat cycle of AMSR-E is 16 days which means that the sensor observes 324 

exactly the same region every 16 days. Within this 16-day period, there are periodic variations in 325 

the locations of antenna footprints sampled to capture a grid-cell mean (as shown in Figure 3). Our 326 

hypothesis is that this kind of periodic sampling pattern can generate spectral peaks within highly 327 
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heterogeneous regions. If true, it implies that spectral peaks can be connected to strong – and 328 

temporally stable – patterns of land surface heterogeneity. 329 

 330 

Figure 2. The soil moisture time series (a and b) and corresponding power spectral density (PSD, c and d) of both 331 

ISMN in situ and AMSR-E LPRM soil moisture data at the ascending overpass time (01:30 p.m.). The infilling 332 

fractions of soil moisture data are shown in the brackets and the Hamming window sizes for PSD estimation inside 333 

the brackets are in units of year. From left to right, the dotted vertical lines represent periods at 4-day (blue), 8-day 334 

(red), 16-day (green), and 365-day (black). 335 

 336 

Figure 3. An illustration of the time-varying effective spatial support for a single quarter degree grid (centered at 337 

33.125° N, 86.375° W and outlined with a black square) where multiple adjacent footprints (yellow dotted ellipses) 338 

within the same orbital overpass are averaged. The background land cover maps are projected in World Geodetic 339 



17 
 

System (WGS) 1984 Universal Transverse Mercator (UTM) zone 16 North system. Comparing time 𝑡 and 𝑡 + 16, the 340 

satellite observes exactly the same region. 341 

2.3.3 Examining the occurrence of periodic errors 342 

To further facilitate the physical interpretation of the occurrence of high-frequency peaks, 343 

a simplistic synthetic experiment monitoring the periodic sampling pattern of satellite swaths over 344 

different land cover characteristics has been conducted following the approach illustrated in Figure 345 

4. In particular, an Antecedent Precipitation Index (API) model is applied to generate synthetic 346 

soil moisture 𝑆𝑀𝑡,𝑖 (mm, in a dimension of water depth) for each sub-grid 𝑖 at time 𝑡 347 

 𝑆𝑀𝑡,𝑖 = 𝛾𝑆𝑀𝑡−1,𝑖 + 𝑃𝑡        𝑖 = 1, … , 𝑛 (6) 348 

where 𝛾 is a dimensionless API loss coefficient and assumed to be a constant value as 0.95; 𝑛 is 349 

the total number of sub-grids which is set to 9 (3-by-3), and 𝑃𝑡  (mm) represents the daily 350 

accumulation depth of random rainfall expressed in dimensions of water depth and generated from 351 

the exponential distribution with mean of 25 mm. 352 

In total, there are five synthetic scenarios (see Figure 4). The synthetic “True” soil moisture 353 

is generated directly through the API model without any assumed observational error, while mean-354 

zero Gaussian distributed random observational error with a standard deviation of 10 mm is added 355 

to the other four cases. With the consideration of spatial heterogeneity, a long-term bias in soil 356 

moisture within the 3-by-3 grid box is set up as a random pattern from a mean-zero normal 357 

distribution with a standard deviation of 20 mm. This long-term bias is meant to represent the 358 

systematic land cover and/or soil physical property variations. Furthermore, the periodic sampling 359 

pattern of satellite footprints is constructed by repeating equally-weighted averaging with different 360 

combinations of sub-grids (to account for the drop-in-bucket method use in the AMSR-E LPRM 361 

product). In accordance with AMSR-E, the repeat cycle is set to 16-days. Through the combination 362 

of these two conditions, four experiments are generated (see Figure 4). Here, the differences in 363 
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mean and standard deviation settings among precipitation, soil moisture observational error and 364 

long-term bias only represent their scaling differences and proportionally rescaling these statistical 365 

moments does not affect presented results. Before the spectral frequency analysis, five synthetic 366 

soil moisture time series (four Cases and “True”) are normalized respectively from their original 367 

climatology to be mean-zero with a standard deviation of one. These synthetically-generated 368 

results will be used to enhance our understanding of peak-generating processes within our real-369 

data analysis. Results from these synthetic experiments will be presented in section 3.1. 370 

 371 

Figure 4. Flowchart of synthetic experiments which examine the combined impact of land surface heterogeneity and 372 

periodic orbital sampling pattern on producing spectral harmonics. 373 
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2.3.4 Detection of 8-day periodic error 374 

With a Brownian spectrum of soil moisture, the increase in power with decreasing 375 

frequency may hinder detection of 16-day peaks in cases where the true soil moisture signal is 376 

stronger than the 16-day resonance. In addition, spectral peak features in higher frequencies can 377 

be difficult to be distinguished from the high-frequency noise. Therefore, despite the fact that 378 

AMSR-E LPRM soil moisture retrievals demonstrate several spectral resonances, we will focus 379 

on 8-day peaks as they represent the most prominent and consistent periodic signal. Detailed peak 380 

detection procedures are described below. 381 

To start, the PSD estimations of AMSR-E LPRM soil moisture product are conducted using 382 

the Welch’s method with different Hamming window sizes. As stated earlier, the window size 383 

determines the amplitude accuracy and frequency resolution of the PSD. To reach a compromise 384 

between them and provide sufficient support for detecting periodicity in high frequency, the 385 

window size is varied between 270 to 360 days at 10-day intervals. Thus, for each grid, there are 386 

ten separate estimates of PSD. These PSDs and corresponding frequency series are then 387 

transformed into logarithm space for further analysis. Polynomial interpolation is used to remove 388 

the background Brownian shape of PSD, allowing for more accurate detection of the peaks. For 389 

detecting the most prominent and consistent 8-day peaks, two thresholds are employed: a) the 390 

minimum peak height is no less than 3-sigma (standard deviation) of the de-trended PSD 391 

estimations; and b) the 8-day peaks are repeatedly detected by at least 5 times (out of the 10 392 

Hamming window sizes considered at each grid). In addition, the same peak detection approach is 393 

applied for AMSR-E brightness temperature 𝑇𝐵-derived parameters as described in the following 394 

section 2.4.1. 395 

 396 
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2.4. Land Surface Heterogeneity indicator 397 

The land surface characteristics are extremely variable in both space and time. Our strategy 398 

is based on applying the best available global descriptions of land surface characteristics from both 399 

microwave and visible/near-infrared remote sensing and comparing these patterns to maps of 8-400 

day spectral peak presence. Naturally, all heterogeneity descriptions have resolution limitations 401 

which prevent them from capturing all sub-pixel scale heterogeneity (Lakhankar et al., 2009b). 402 

2.4.1 𝑇𝐵-derived heterogeneity indicator 403 

The AMSR-E 𝑇𝐵  data are re-sampled onto regular quarter degree grid using a drop-in-404 

bucket approach. Quarter degree grid-scale averages are acquired by averaging all footprints – 405 

across various scans and swath cycles – whose geographic centers fall within a grid box for a given 406 

day. Thereby, the spatial coverage of the effective radiating body can extend beyond the 407 

boundaries of each grid box. In fact, according to Jackson et al. (2010), the main contribution of 408 

radiation can come from a 0.75°×0.75° box centered at each quarter degree grid. Therefore, 409 

mirroring the land surface parameterization of the LPRM algorithm, a 𝑇𝐵-derived heterogeneity 410 

indicator (TB-HI) is proposed to characterize the spatial heterogeneity of the underlying land 411 

surface (within a centered 0.75°×0.75° box) for several adjoining satellite footprints within the 412 

same orbital overpass 413 

 𝐻3×3
𝑇𝐵 = 𝐻3×3

𝑀𝑃𝐷𝐼 + 𝐻3×3
𝑀𝑊𝐸 + 𝐻3×3

𝑇𝐸𝑀𝑃 (7) 414 

where 415 

 𝐻3×3
𝑀𝑃𝐷𝐼 = 𝑠𝑡𝑑[log(𝑀𝑃𝐷𝐼)𝑖,𝑗] ≡ 𝑠𝑡𝑑 [log (
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 𝐻3×3
𝑀𝑊𝐸 = 𝑠𝑡𝑑[log(𝑀𝑊𝐸)𝑖,𝑗] ≡ 𝑠𝑡𝑑 [log (
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 𝐻3×3
𝑇𝐸𝑀𝑃 = 𝑠𝑡𝑑 [log (

1

𝑁
∑ 𝑇𝐵(𝑉),𝑡

𝐾𝑎𝑁
𝑡=1 )

𝑖,𝑗
]   𝑖, 𝑗~(1,2,3) (10) 418 

and 𝑠𝑡𝑑[~] represents the mathematic operation of calculating standard deviation for a 3 × 3 box 419 

(i.e., 0.75°×0.75°). In Equations (8–10), 𝑖 and 𝑗 are the grid index within the 3 × 3 box, and 𝑁 is 420 

the total number of sampled time steps. 𝐻3×3
𝑀𝑃𝐷𝐼 is calculated based on the AMSR-E C-band 𝑇𝐵 data 421 

and can be a reflection of both the soil and canopy information (Owe et al., 2001). Moreover, the 422 

effective emissivity (𝑀𝑊𝐸 = 𝑇𝐵(𝑃) 𝑇⁄ ) is used in Equation 9 to capture the heterogeneity in 423 

emissivity while the Ka-band 𝑇𝐵 at 𝑉 represents the effective surface temperature 𝑇. The spatial 424 

variation of temperature is also taken into account using Equation 10. For simplicity, fixed values 425 

of MPDI, MWE, and  𝑇𝐵(𝑉)
𝐾𝑎  are assigned to water bodies: 𝑀𝑃𝐷𝐼 = 0.2  (Chen et al., 2011), 426 

𝑀𝑊𝐸 = 0.5 (Grody, 1993; Weng, 2010), 𝑇𝐵(𝑉)
𝐾𝑎 = 220 (Lin et al., 1998). The ranges of these 427 

heterogeneity components are slightly different, thus global normalization has been conducted for 428 

each component and 𝐻3×3
𝑇𝐵  (unit-less) is further normalized into [0,100]  after arithmetic 429 

summation. Note that this heterogeneity indicator is computed directly from the AMSR-E 430 

observed 𝑇𝐵 data without any other auxiliary biophysical information sources and can be adapted 431 

to other microwave satellite or retrieval algorithms as well. For example, C-band 𝑇𝐵(𝑃)
𝐶  could be 432 

replaced with L-band 𝑇𝐵(𝑃)
𝐿  acquired from the SMOS and SMAP missions, while surface 433 

temperature data could also potentially be derived from land surface model output. 434 

2.4.2 NDVI-derived heterogeneity indicator 435 

Vegetation canopy plays an important role in observing and retrieving soil moisture from 436 

space-borne platforms (Jackson et al., 1982). NDVI is a simple index of vegetation density which 437 

can be applied for depicting the land surface characteristics. To take into account the canopy, a 438 
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straightforward NDVI-derived heterogeneity indicator (VI-HI) is proposed with a form similar to 439 

TB-HI 440 

 𝐻3×3
𝑉𝐼 = 𝑠𝑡𝑑 [(

1

𝑁
∑ 𝑁𝐷𝑉𝐼𝑡

𝑁
𝑡=1 )

𝑖,𝑗
]  𝑖, 𝑗~(1,2,3) (11) 441 

where the standard deviation (𝑠𝑡𝑑[~]) of NDVI is calculated for a 3 × 3 box centered at each 442 

quarter degree grid. This indicator characterizes the spatial variability of vegetation density over 443 

the average main-beam FOV of AMSR-E. 444 

2.4.3 Land cover-derived heterogeneity indicator 445 

Different land cover types can demonstrate distinct physical characteristics with varying 446 

temporal climatology. Regions with various land cover types can be quite heterogeneous with 447 

regard to satellite-based soil moisture retrieval. Therefore, a land cover-derived heterogeneity 448 

indicator (LC-HI) is defined as the number of individual land cover types contained within a single 449 

0.75°×0.75° box for each quarter degree grid 450 

 𝐻3×3
𝐿𝐶 = |(〈𝐿𝐶𝑘

𝑃𝑒𝑟𝑐 ≥ 10〉 ∪ 〈10 > 𝐿𝐶𝑊𝑎𝑡𝑒𝑟
𝑃𝑒𝑟𝑐 > 0〉)𝑖,𝑗|   𝑘~(1,9)   𝑖, 𝑗~(1,2,3) (12) 451 

where |~| denotes the cardinality operator, 𝐿𝐶𝑘
𝑃𝑒𝑟𝑐 represents the grid area in percent classified as 452 

land cover type 𝑘 (out of nine classes), and 𝐿𝐶𝑊𝑎𝑡𝑒𝑟
𝑃𝑒𝑟𝑐 is the percentage classified as Water. Open 453 

water, with its high dielectric constant, has a profound impact on the microwave emission and even 454 

small fractions of open water may greatly alter the 𝑇𝐵 observations (Loew, 2008). In this case, LC-455 

HI will increase 1 if there is open water within the 3 × 3 box. The other land cover classes are only 456 

taken into account when their percentages are larger than 10%. 457 

 458 

III. Results 459 

Our main interest is examining the most prominent and consistent spectral peaks generated 460 

from AMSR-E’s periodic sampling pattern and the relationship between theses peaks and the 461 
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spatial heterogeneity of the corresponding land surface. To physically explore the occurrence of 462 

high frequency spectral peaks, both the synthetic experiment and a detailed site-specified analysis 463 

are discussed first. Subsequently, the global distribution of the 8-day periodic errors, and their 464 

relationship with the spatial heterogeneity indicators introduced in section 2.4, is presented. 465 

3.1 Synthetic experiments 466 

Figure 5 demonstrates the PSD estimations of five synthetic soil moisture time series (as 467 

described in section 2.3.3). Compared to the “True” scenario, both Case 1 and Case 3 show quite 468 

similar spectral characteristics suggesting that the land cover heterogeneity alone cannot lead to 469 

high-frequency peaks without periodic sampling pattern. While both Case 2 and Case 4 exhibit a 470 

moderate noise floor over the “True” soil moisture for periods between 2- and 4-days. Particularly, 471 

significant frequency peaks are exposed when the periodic sampling pattern is combined with 472 

spatial heterogeneity in Case 4. The results suggest that, in the absence of either the spatial 473 

heterogeneity or periodic sampling patterns, high frequency peaks cannot be produced.  474 

 475 

Figure 5. High-frequency PSD for soil moisture time series generated by the synthetic “True” case and the synthetic 476 

“satellite-based” Cases 1–4. The Hamming window size is set equal to 365 days. The entire PSDs (including lower-477 

frequency components) are shown in the upper left corner. From left to right, the colored dashed vertical lines represent 478 

4-day, 8-day, 16-day, and 365-day periods. Note that the PSDs of the ‘True” case and Cases 1–3 are virtually 479 

indistinguishable. 480 
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Additionally, the influence of different re-gridding methods on the occurrence of spectral 481 

peaks has been explored. All PSD estimations of three re-gridded soil moisture time series have 482 

shown notable spectral peaks, indicating that the peaks are result for a combination of periodic 483 

sampling patterns and stable spatial heterogeneity – regardless of exact re-gridding method applied 484 

(see section B of the supporting materials for further discussion). 485 

3.2. Site-specified analysis 486 

Figure 6.a and 6.f show land cover maps for two arbitrary 0.75°×0.75° grids within North 487 

America (hereafter referred as to Sites A and B). Also shown are the enlarged 3-year time series 488 

(from January 2004 to December 2006) for AMSR-E LPRM soil moisture and corresponding 489 

spectral analysis within each 0.25°×0.25° grid located at the center of these 0.75°×0.75° grids – 490 

as outlined by the black boxes. Both sites in Figure 6 represent highly heterogeneous land surface 491 

conditions. From the GlobeLand30 land cover map of Site A (latitude: 38.875° N, longitude: 492 

121.125° W), a highly heterogeneous satellite orbit overpassing region can be observed with large 493 

portions of forest and urban land cover. Meanwhile, the fractions of water bodies, crop, grassland, 494 

and shrubland land cover types are also non-trivial with a relatively clear spatial pattern (Figure 495 

6.a). In particular, the urban area is mainly located in the lower-left corner, while forest covers 496 

upper-right corner. Grassland is mixed with crop, shrubland and water bodies. A strong negative 497 

trend in vegetation density from upper-right to lower-left can be observed. 498 

The soil moisture time series for Site A (Figure 6.b and Figure 6.c) demonstrates a 499 

relatively strong seasonal climatology with values varying from 0.01 to 0.5 (m3/m3). AMSR-E 500 

LPRM soil moisture retrieval for each quarter degree grid is generated based as the mean of all 501 

swath data whose footprint centers fall within that particular grid (Owe et al., 2008). The soil 502 

moisture record manifests several significant spectral resonances – including a significant 8-day 503 
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peak. Moreover, 4-day and 16-day peaks are also conspicuous for both overpasses. Given their 504 

uses in LPRM retrievals, the 𝑇𝐵-derived MPDI and MWE are also analyzed in frequency domain. 505 

Similarly, an 8-day peak in MPDI appears in both half-orbits – suggesting that the spectral peaks 506 

in soil moisture retrievals can be traced back to the MPDI. However, the probability of occurrence 507 

and the relative amplitude of spectral peaks in soil moisture and MPDI are not exactly the same 508 

for each peak. On the other hand, the PSDs of MWE also show 8-day and 4-day spectral peaks for 509 

the ascending overpass (Figure 6.e) and a 4-day peak for the descending overpass (Figure 6.d). 510 

Therefore, within Site A, strong spatial heterogeneity in land cover appears capable of generating 511 

soil moisture spectral peaks associated with the satellite orbiting cycle. 512 

Likewise, Site B (latitude: 34.125° N, longitude: 87.125° W) exhibits strong spatial land 513 

cover heterogeneity (Figure 6.f). Specifically, forest covers the north-western regions and is mixed 514 

with crops and grasslands. Small patches of urban and water bodies are sparsely distributed 515 

throughout the scene. The soil moisture time series values range from 0.01 to 0.7 (m3/m3). Despite 516 

a lack of strong large-scale spatial variation, this site also demonstrates heterogeneous land surface 517 

characteristics with different land cover types thoroughly mixed with each other. Both the 518 

ascending and descending soil moisture time series contain 8-day peaks in the frequency domain 519 

(Figure 6.i and Figure 6.j) with the ascending peak more prominent. For the descending overpass, 520 

the more equivalent thermodynamic conditions are beneficial for applying the LPRM soil moisture 521 

retrieval algorithm. A significant 8-day peak in the descending MPDI does not lead to a 522 

comparable peak in the soil moisture retrievals (Figure 6.i). Also, fewer peaks are observed in the 523 

PSDs of MWE compared to Site A. Other factors such as the vegetation density and soil and canopy 524 

effective temperatures in the retrieval process can play a role in determining the retrieved soil 525 

moisture. Specifically, the microwave radiation emitted from water bodies is quite different from 526 
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other land cover types and can strongly impact in soil moisture retrievals (Gouweleeuw et al., 527 

2012). 528 

 529 

Figure 6. Site-specified demonstrations of high resolution land cover (a and f), descending (b, d, g, and i) and 530 

ascending (c, e, h, and j) AMSR-E LPRM soil moisture and brightness temperature (𝑇𝐵). Each land cover map depicts 531 

a 0.75°×0.75° grid centered at different locations (Sites A and B) with the black box outlines the 0.25°×0.25° grid. 532 

Maps are projected in WGS 1984 UTM coordinate system and latitudes and longitudes of sites are shown as well. 533 

Enlargements of the 3-years (from January 2004 to December 2006) time series of soil moisture retrievals are included 534 

for each site and the infilling fractions are shown in the brackets. The spectral analyses are conducted for AMSR-E 535 

LPRM soil moisture retrievals and 𝑇𝐵-derived Microwave Polarization Difference Index (MPDI) and Microwave 536 

Emissivity (MWE). The Hamming window sizes for PSD estimations are indicated by units of year in the brackets. 537 

Dotted vertical lines represent three periods at 4-day, 8-day, and 16-day. 538 

In contrast to the relatively heterogeneous sites examined in Figure 6, Figure 7 looks at two 539 

spatially homogeneous sites (Sites C and D). The two sites are dominated by grassland and crop 540 

cover, respectively. The coverage fractions of other land cover types are relatively negligible. Both 541 
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soil moisture time series depict a relatively small seasonal climatology compared to Figure 6 542 

without the orbiting cycle-related spectral peaks. Also, no prominent peaks are observed from the 543 

PSDs of both 𝑇𝐵-derived MPDI and MWE.  544 

 545 

Figure 7. Same with Figure 6 except for Sites C and D. 546 

By investigating four different sites with various spatial coverages of land cover types, a 547 

possible link between spectral peaks of retrieved soil moisture and the directly observed 𝑇𝐵 can be 548 

inferred. The spatial heterogeneity combined with systematic orbiting cycle can lead to the spectral 549 

peaks in MPDI and thus soil moisture retrievals. 550 

 551 

3.3. Global distribution of spectral peaks 552 

While interesting, results in Figures 6 and 7 are clearly anecdotal in nature. In order to 553 

examine more general tendencies, global distributions of the 8-day spectral peaks in LPRM 554 

AMSR-E soil moisture retrievals are plotted in Figure 8 for both descending and ascending 555 
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overpasses. Regions with high (over 50%) infilling fractions (Figure 1.c and 1.d) are indicated 556 

with different color settings for grids with or without 8-day spectral peaks. 557 

Generally speaking, the spatial distribution of spectral peaks is similar for both half-orbits. 558 

However, relatively more peaks are found in the ascending half-orbit – 20% versus 17% of the 559 

total grids over the globe. Both descending and ascending overpasses have demonstrated notable 560 

spectral peaks over densely-vegetated areas of Eastern CONUS. On the other hand, there exist 561 

moderately different distributions of peaks over Western CONUS. Note that significant 562 

discrepancies of near-surface (soil, canopy and air) vertically thermal profiles can be observed 563 

between the AMSR-E nighttime descending (01:30 a.m.) and daytime ascending (01:30 p.m.) 564 

overpasses. During nighttime, near-surface isothermal conditions benefit the retrieval of soil 565 

moisture from brightness temperature observations with higher accuracy (Jackson et al., 2010), 566 

yielding less spurious spectral peaks in the descending overpass.  567 

Comparing regions with high infilling fractions (blue and dark brown in Figure 8) against 568 

other grids (red and light brown), the probability of identified peaks can be lower with 12% (4/33) 569 

versus 24%, and 13% versus 20% for ascending and descending overpasses, respectively. With 570 

increased infilling fractions, more in-filled data are included for the peak detection, which may 571 

lead to possible missed identification of peaks (please refer to section A of the supporting materials 572 

for more details). Nevertheless, as our gap-filling approach does not lead to occurrence of peaks, 573 

any peaks detected for grids with high infilling fraction should be prominent and therefore are 574 

preserved for the global distribution mapping. 575 

Additionally, comparing Figure 8 and Figure 1.a or Figure 1.b, the presence of RFI may 576 

impact the occurrence of spectral peaks. See section 4.1 for additional discussion on this point.  577 
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 578 

Figure 8. Global distribution maps of 8-day spectral peaks in the AMSR-E LPRM soil moisture product for both (a) 579 

descending and (b) ascending half-orbits. Regions with in-filled data over (below) 50% are shown in dark (light) 580 

brown. Accordingly, grids with peaks are demonstrated in blue or red color. Percentages of grids with/without 8-day 581 

peaks in regard to the total grids for both descending and ascending overpasses are computed, respectively. 582 

Furthermore, the global spectral analyses are conducted for the 𝑇𝐵 -derived MPDI and 583 

MWE as shown in Figure 9. As depicted, both descending (Figure 9.a and 9.c) and ascending 584 

(Figure 9.b and 9.d) half-orbits have a similar spatial distribution pattern with regard to MPDI or 585 

MWE. Overall spatial patterns of 8-day peaks in MPDI are comparable with that in soil moisture 586 

retrievals. However, 8-day peaks in MPDI are relatively more common than soil moisture peaks 587 

in Figure 8. Comparing to (relatively dynamic) soil moisture values, MPDI is more likely to 588 

respond to temporally-stable land surface elements, such as land cover type and vegetation density. 589 
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 590 

Figure 9. Global distribution maps of 8-day spectral peaks in AMSR-E -derived MPDI (a and b) and MWE (c and d) 591 

for both descending and ascending half-orbits. Color setting is same as Figure 8 and percentages of grids with/without 592 

8-day peaks are also shown in the legend. 593 

In contrast, MWE maps demonstrate relatively fewer peaks than soil moisture in Figure 8. 594 

MWE as a function of several varying variables, including water content and soil salinity, changes 595 

rapidly over land surface (Prigent et al., 2006). More specifically, the intensity and duration of 596 

precipitation events modulate the land surface emissivity (Ferraro et al., 2013). Consequently, 597 

MWE does not generally show strong and persistent land surface heterogeneity over the 16-day 598 

exact repeat cycle of AMSR-E sensor. Taken as a whole, Figure 9 suggests a primary role for 599 

MPDI as the source of periodicity in LPRM soil moisture retrievals. 600 

 601 

3.4. Relating the 8-day periodic error to spatial heterogeneity 602 

To explore the relationship between the presence of an 8-day spectral peak in soil moisture 603 

retrievals and the land surface spatial heterogeneity, three heterogeneity indicators are computed 604 

for each quarter degree grid (see section 2.4 above). Figure 10 shows global maps of these three 605 

heterogeneity indicators, namely TB-HI, VI-HI, and LC-HI. For each map, larger values indicate 606 
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larger amounts of land surface spatial heterogeneity although the valid ranges are different for each 607 

indicator (see Table 1 for details).  608 

 609 

Figure 10. Global maps of three heterogeneity indicators calculated from: (a) AMSR-E 𝑇𝐵 observations, (b) long-610 

term averaged vegetation index and (c) land cover types. 611 

The three maps show different aspects of spatial heterogeneity which results in different 612 

distributions of indicator values. Nevertheless, the spatial distribution of high heterogeneity 613 

indicators is generally consistent with the occurrence of 8-day peaks in the AMSR-E LPRM soil 614 

moisture product (Figure 8). Regions such as the Amazon and the Tibetan Plateau have 615 

demonstrated a significant relationship that grids with 8-day peaks have extremely high TB-HI 616 
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(Figure 10.a). Likewise, in western CONUS, South America, South Africa, and India, a relatively 617 

close link can be observed. Along the west coast of South America and over West Central Africa, 618 

a comparable distribution of high VI-HI and grids with 8-day peak is observable (Figure 10.b). 619 

LC-HI also shows some high values for central Southern Africa (Figure 10.c) where 8-day peaks 620 

are frequently detected.  621 

Both VI-HI and LC-HI fail to capture the information over non-vegetated landscapes, e.g., 622 

North Africa and the Arabian Peninsula. These two indicators are based solely on relatively coarse-623 

resolution land cover characteristics and cannot fully represent the land surface variability. Instead, 624 

other factors not captured in the indices, such as soil texture and roughness, may play a primary 625 

role in determining the heterogeneity for low-vegetated regions. 626 

Table 1 shows the global mean and median values for each of the three indicators, both for 627 

grids with and without 8-day peaks. Under all circumstances, grids with the 8-day peak are 628 

associated with relative higher mean and median values of the heterogeneity indicators. This 629 

further suggests that the occurrence of spectral peaks can be related to the land surface spatial 630 

heterogeneity. In addition, Figure 11 shows the normalized histograms (to [0,100]) of three 631 

indicators over the globe for grids with or without 8-day peaks. Descending and ascending 632 

overpasses are separately processed and the statistical hypothesis test (Wilcoxon-Mann-Whitney 633 

test) has been performed for six scenarios. All test results indicate that the median of the indicator 634 

for grids with peaks is greater than that for grids without peaks at a 0.001 significance level. This 635 

suggests a statistically significant capability for the three heterogeneity indicators to characterize 636 

regions with strong land surface variability. 637 

Table 1. Global means and medians of three heterogeneity indicators under two conditions: with or without 8-day 638 

peaks identified in soil moisture retrievals. Statistics for both descending (01:30 a.m.) and ascending (01:30 p.m.) 639 

half-orbits are calculated. Data in parentheses are computed for regions with infilling fraction smaller than 50%. 640 
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Indicator Descending  Ascending  Valid Range 

 Yes No  Yes No   

Mean        

TB-HI 15.30 (13.01) 5.70 (4.89)  12.98 (11.45) 6.18 (4.91)  [0 100] 

VI-HI 0.06 (0.05) 0.03 (0.03)  0.05 (0.05) 0.03 (0.03)  [0 0.4] 

LC-HI 2.09 (2.07) 1.66 (1.62)  1.97 (1.94) 1.70 (1.63)  [1 6] 

        

Median        

TB-HI 7.29 (6.91) 3.20 (3.09)  6.38 (6.21) 3.22 (3.01)  [0 100] 

VI-HI 0.04 (0.04) 0.02 (0.02)  0.03 (0.03) 0.02 (0.02)  [0 0.4] 

LC-HI 2 (2) 1 (1)  2 (2) 2 (1)  [1 6] 

 641 

For grid cells without peaks, nearly half has the lowest level of spatial heterogeneity 642 

indicators. For example, 61.54% (61.00%) of grids without peaks in descending (ascending) 643 

overpass has a TB-HI smaller than 4 (Figure 11.a and 11.b). Conversely, over 74% (71%) of grids 644 

with peaks in descending (ascending) overpass has a TB-HI larger than 4. Similar contrasts can be 645 

found for the other indicators. Overall, grids with higher values of the heterogeneity indicators are 646 

more likely to contain 8-day peaks in soil moisture retrievals. 647 

 648 
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Figure 11. Histograms of three heterogeneity indicators for grids with or without 8-day peaks. Descending and 649 

ascending overpasses are separately processed over the globe. 650 

 651 

IV. Discussion 652 

The accurate characterization of errors in remotely sensed soil moisture products is 653 

important for satellite calibration/validation activities and the development of optimized 654 

assimilation approach for integrating retrievals with hydrologic modeling. In contrast to the 655 

common assumption of temporally white errors, Su et al. (2013a) demonstrated that AMSR-E and 656 

SMOS gridded soil moisture products over Australia depict spectral resonances suggesting the 657 

existence of periodic errors. Here, we expanded the time series spectral analysis in Su et al. (2013a) 658 

to a global domain and explored the physical origins of these periodic errors. 659 

Through the synthetic experiments, the periodic errors can be linked to the combination of 660 

the periodic sampling patterns and the land surface spatial heterogeneity (Figure 5). Results of 661 

AMSR-E LPRM soil moisture product further presented a link of spectral peaks existing in 𝑇𝐵-662 

derived MPDI and soil moisture retrievals. More specifically, that spatial heterogeneity within the 663 

satellite’s field-of-view can lead to the periodicity in MPDI estimates which are then transmitted 664 

into soil moisture retrievals. As demonstrated in Figure 8, LPRM soil moisture derived from both 665 

ascending and descending overpasses demonstrate significant 8-day spectral peaks along coastal 666 

areas and some regions with water bodies, e.g., the Amazon floodplain and areas of central 667 

Australia with ephemeral salt lakes. In addition, regions with spatially-heterogeneous land cover 668 

(e.g., eastern CONUS, South America, Western Europe, Peninsular India, and southern China) 669 

appear more likely to have the 8-day peaks. 670 

 671 
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4.1. Potential role of radio frequency interference 672 

The AMSR-E LPRM soil moisture product is a combined product which has utilized both 673 

C- and X-band 𝑇𝐵 to retrieve soil moisture. The C-band frequency, which is theoretically more 674 

sensitive to variations in soil moisture, is treated as the primary data source. However, over regions 675 

with high RFI contaminations, the retrieval method switches from C- to X-band (shown in Figure 676 

1.a and 1.b). This strategy can largely mitigate the influence of strong and spatio-temporally 677 

constant RFI. Figure 6 shows an illustration of RFI impact at two heterogeneous sites with 678 

contrasting land surface characteristics. For Site A, urban area covers a large portion of the 679 

0.75°×0.75° grid and only X-band 𝑇𝐵 has been utilized for retrieving soil moisture. While the RFI 680 

impact has been eliminated to a great extent, spectral peaks are detected from the corresponding 681 

soil moisture retrievals (Figure 6.d and 6.e). In contrast, without significant RFI at Site B, C-band 682 

𝑇𝐵 has been applied and periodic errors still exist (as shown in Figure 6.i and 6.j). This suggests 683 

that the periodicity found in AMSR-E LPRM soil moisture product cannot be fully attributed to 684 

RFI alone. 685 

On the other hand, in addition to the 𝑇𝐵-derived heterogeneity indicators, another two 686 

indicators which are computed from independent MODIS vegetation index and land cover type 687 

information will not reflect RFI information. As depicted in Figure 11, VI-HI and LC-HI have 688 

demonstrated statistically significant skills in characterizing land surface heterogeneity. Via a pre-689 

defined threshold for each heterogeneity indicator, VI-HI and LC-HI can partially differentiate 690 

grids with peaks from those without peaks indicating the causal relationship between spatial 691 

variability of natural land surface and the occurrence of peaks. 692 

Nevertheless, similarities between RFI map (Figure 7.a in Njoku et al., 2005) and 693 

ascending spectral peak map (Figure 8.b) can be observed, for example over CONUS and the 694 



36 
 

western Arabian Peninsula. Note that the RFI detection method is based on the spectral difference 695 

between the 6.9- and 10.7 GHz channels and a threshold should be assigned to determine whether 696 

RFI exists or not (Li et al., 2004). Consequently, if RFI is of low-level or spatially/temporally 697 

intermittent (which is often the real case), it might escape the detection. Moreover, regions with 698 

RFI contaminations are often close to urban areas, where transitions in architecture and building 699 

density, vegetation, and anthropogenic activity are thoroughly mixed (Cadenasso et al., 2007). 700 

Under such circumstance, a high heterogeneity of land surface characteristics (including both 701 

natural and artificial features) can be observed over these regions and thus lead to more spectral 702 

peaks in soil moisture retrievals. Therefore, RFI can intensify the land surface heterogeneity and 703 

increase the probability of occurrence of spectral peaks in satellite-derived soil moisture retrievals. 704 

 705 

4.2. Impact of the infilling method 706 

To conduct the spectral analysis, the 1-D infilling method was performed to achieve 707 

evenly-spaced observations. Given that the infilling method is based on statistics sampled from 708 

the entire time series, the results retain the autocorrelation structure of soil moisture in the high 709 

frequency domain but in-filled values are smoothed with low frequency climatology for significant 710 

gaps (Wang et al., 2012). Comparing Figure 1.c or 1.d with Figure 8, no obvious spatial correlation 711 

between the infilling fraction and existence of 8-day peak can be observed – suggesting that our 712 

infilling approach does not lead to the spurious production of spectral peaks. Aside from high 713 

latitudes near the pole where the interpolation fraction is extremely large and there is less chance 714 

of having 8-day peaks, in most regions with small infilling fractions, such as Western Europe, 715 

South America, Africa, and Australia, there is no evidence that the gap infilling has an impact on 716 

the frequency of peak occurrence. 717 
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In order to further examine this point, a synthetic control test has been conducted to explore 718 

the impact of infilling fraction. Details can refer to section A in the supporting materials. The 719 

results demonstrated that, as expected, the accuracy of in-filled soil moisture time series gradually 720 

decreases with increasing infilling fractions. However, no spurious spectral peaks will be 721 

introduced by the infilling method, suggesting that any spectral peaks detected in the in-filled soil 722 

moisture data are present in the original time series. Further studies may explore alternative PSD 723 

estimation approaches (such as the Lomb-Scargle periodogram (Lomb, 1976; Scargl, 1982) or 724 

wavelet transform-based method (Foster, 1996) which do not require evenly-spaced observations. 725 

 726 

4.3. Potential applications 727 

Results in Figure 8 identified significant periodic error components in existing soil 728 

moisture remote sensing product and globally mapped their distribution. Removing such 729 

systematic error components is a critical goal of satellite calibration activities and could potentially 730 

aid in the development of optimized gridding and processing procedures. A global identification 731 

map of such periodic errors would also be beneficial for identifying highly heterogeneous regions 732 

for the targeted application of a band-stop filter (Su et al., 2013a; 2015) for removing the 733 

systematic periodic errors in short-term satellite-derived soil moisture products. 734 

For short-term available satellite-based soil moisture products, the baseline of applying the 735 

band-stop filtering is to apply it indiscriminately to every grid cell. In this case, the majority of 736 

grids without significant frequency peaks can be over-smoothed (because over 80% of global grid 737 

cells lack 8-day soil moisture peaks). Moreover, spatial heterogeneity may similarly affect other 738 

satellite-based products, particularly when they have similar orbital configurations and retrieval 739 

inputs as AMSR-E LPRM. For satellite records which are too short for PSD estimation, one option 740 
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is to utilize a peak distribution map generated from the long-term (9+ year) AMSR-E soil moisture 741 

time series as the criterion for identifying heterogeneous regions in which to apply a band-stop 742 

filter. 743 

 744 

V. Conclusions 745 

Via a synthetic experiment imitating the periodic sampling pattern of polar-orbiting 746 

satellite swaths over various land cover characteristics, the combination of spatial land surface 747 

heterogeneity and periodic orbital sampling pattern are linked to periodic errors in remotely-sensed 748 

soil moisture retrievals (Figure 5). In data real cases utilizing AMSR-E LPRM soil moisture 749 

retrievals, site-specific studies demonstrate that the satellite repeat cycle can generate a periodicity 750 

in the 𝑇𝐵-derived MPDI and corresponding LPRM soil moisture retrievals (Figures 6 and 7). By 751 

applying the peak detection method, global distribution maps of 8-day peaks in AMSR-E LPRM 752 

soil moisture retrievals and 𝑇𝐵-derived MPDI and MWE can be generated. Comparisons between 753 

these maps show strong evidence that the satellite orbiting cycle-related spectral peaks are more 754 

likely to occur in highly-heterogeneous land regions (Figures 8 and 9). The conclusion is intuitive 755 

to understand. The re-gridding method of satellite observations is usually based on a selection of 756 

all footprints within the same orbital overpass covering the given grid. Due to the progression of 757 

the satellite orbit, the track changes from day to day with an exact repeat cycle and thus introduces 758 

the periodic errors into the sampling over regions with large land surface heterogeneity. 759 

The global identification of the periodic error is of importance for the data assimilation 760 

community and will also support the development of improved soil moisture re-gridding and post-761 

processing methods. To globally correlate the occurrence of such spectral peaks with heterogeneity 762 

in land surface characteristics, three heterogeneity indicators have been proposed and shown their 763 
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statistically significant capability in detecting high-heterogeneous regions with 8-day peaks 764 

(Figure 10, Figure 11, and Table 1). The association between heterogeneity indicators and the 765 

occurrence of 8-day periodic errors is compelling evidence of the causal link between land surface 766 

spatial heterogeneity and the periodic errors in satellite-based re-gridded soil moisture product.  767 

While these heterogeneity indicators have demonstrated statistically significant skills at a 768 

global scale, they do not predict all peaks (and predict some peaks which to not occur). As a result, 769 

further refinement of these indicators is necessary to make them of immediate value in an 770 

operational retrieval and/or data assimilation context. Nevertheless, results presented here 771 

represent an important first step in this direction as both synthetic and real data results provide 772 

clear evidence of a general link between land surface spatial heterogeneity and the occurrence of 773 

periodic errors in AMSR-E soil moisture retrievals. Additionally, other PSD estimation approaches 774 

and soil moisture products using different retrieval algorithms (Kim et al., 2015), such as the JAXA 775 

product retrieved by Japan Aerospace Exploration Agency, should be included in follow-on 776 

analyses. 777 
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